Generalized common spatial factor model.

نویسندگان

  • Fujun Wang
  • Melanie M Wall
چکیده

There are often two types of correlations in multivariate spatial data: correlations between variables measured at the same locations, and correlations of each variable across the locations. We hypothesize that these two types of correlations are caused by a common spatially correlated underlying factor. Under this hypothesis, we propose a generalized common spatial factor model. The parameters are estimated using the Bayesian method and a Markov chain Monte Carlo computing technique. Our main goals are to determine which observed variables share a common underlying spatial factor and also to predict the common spatial factor. The model is applied to county-level cancer mortality data in Minnesota to find whether there exists a common spatial factor underlying the cancer mortality throughout the state.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial structure of breast cancer using Poisson generalized linear mixed model in Iran

Background: Breast cancer is one of the most common diseases in women and causes more deaths rather than other cancers. The increasing trend of breast cancer in Iran makes clear the need of extensive breast cancer research in this area. Some studies showed that in the variety countries and even in the different areas in one country has different risk of breast cancer incidence and this is a rea...

متن کامل

Bayesian Inference for Spatial Beta Generalized Linear Mixed Models

In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...

متن کامل

Generalized spatial structural equation models.

It is common in public health research to have high-dimensional, multivariate, spatially referenced data representing summaries of geographic regions. Often, it is desirable to examine relationships among these variables both within and across regions. An existing modeling technique called spatial factor analysis has been used and assumes that a common spatial factor underlies all the variables...

متن کامل

Spatial count models on the number of unhealthy days in Tehran

Spatial count data is usually found in most sciences such as environmental science, meteorology, geology and medicine. Spatial generalized linear models based on poisson (poisson-lognormal spatial model) and binomial (binomial-logitnormal spatial model) distributions are often used to analyze discrete count data in which spatial correlation is observed. The likelihood function of these models i...

متن کامل

Dimension reduction and alleviation of confounding for spatial generalized linear mixed models

Non-Gaussian spatial data are very common in many disciplines.For instance, count data are common in disease mapping, and binary data are common in ecology.When fitting spatial regressions for such data, one needs to account for dependence to ensure reliable inference for the regression coefficients. The spatial generalized linear mixed model offers a very popular and flexible approach to model...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biostatistics

دوره 4 4  شماره 

صفحات  -

تاریخ انتشار 2003